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CHAPTER 1

INTRODUCTION

1.1 Motivation for the Use of Microstrip Antennas

In recent years there has been an increased interest in microstrip

antennas, primarily due to their surface conformability , compact

structure and ease of construction . A general microstrip antenna can be

pictured as in Figure 1 .1. The antenna element is separated from the

ground plane by a suitable low-loss dielectric medium . Since these

antennas have such a low profile , they are suitable for high velocity

vehicles where wind drag must be kept to a minimum .

Experimentally, these antennas have been found to have a relat ive ly

narrow bandwidth. Yet because these antennas are so thin , there is

still active interest in finding a simple analytic model to describe and

predict their behavior.

A major use for the microstrip antenna is as an element in an array.

Experimental results indicate that no “magic” element sha pe ex ists that

will give a substantially wider impedance bandwidth than any other

shape. For this reason , it would seem more importan t to concentra te on

7 a short list of simple geometries, rat her than a long list of random

geometries. Of course, the short list must include elements whose

radiation patterns are suff iciently var ied , so as to allow a broad range

• of array design. Such a list could include the disk , half disk ,
I L

annulus , rectangle, square and triangle. A simple and accurate theory

has been developed for use with these geometries. In Chapter 2, the
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Figu re 1.1. A general micros t rip  antenna element .
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disk element is analyzed , and the method of analysis can also be applied

to other simple geometr ies.

1.2 Literature Review

In the literature , some scattered and limited attempts have been

made to analyze the behav ior of a few microstrip elements. Some of

these attempts have incor porated doubt ful and even inv alid assum pt ions.

Munson ’s analysis of the rectangular element is one exam ple , [1].

It was cla imed that the input impedance could be modelled as two slot

antennas separated by a low Impedance transmission line. The obv ious

oversight is that this uses superposition of the power patterns of the

two slots , thus neglecting any mutual  coupling. A similar approach was

used by Derneryd [2) .  No attempt was made to compare calculated and

measured input impedance results in either [1]  or [2 ] ,  and their

analysis is very limited since the feed point must remain on that  edge

of the rectangle where the E f ield is constant.  F ina l ly ,  the method can

not be used for any other element shape .

Another method [3) used a grid of linear and V shaped dipoles to

approximate the radiating element. This method shows an agreement

between calculated and measured input impedances that is qui te  Inferior

to that obtained by the simple analysis in Chapter 2. Even so , the

method was inefficient  with  respect to the computer time required . The

analysis of Chapter 2 shows excellent results , and requires orders of

magnitude less computer time than that  of [3].  As an example , the

resonant radiation pattern and the input  impedance for 15 frequencIes

near resonance were calculated in under 2 seconds for a disk antenna .

4
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CHAPTER 2

ANALYSIS OF THE MICROSTRIP DISK

S

2.1 The Simole Cavity Model.

The method used in analyz ing the disk is somewhat different from

methods found in the literature , and is quite simple. Analytic results

obtained using this method agree very well with measured data , and it

appears that validity has not been sacrificed for simplicity .

Power is fed to the antenna by either a coaxial line piercing the

ground plane , or by a microstrip transmission line at the edge , as shown

in Figure 2.1. The antenna is modelled as a closed cavity, bounded on

top and bottom by perfect electric conducting (PEC) planes, and around

the perimeter by a perfect magnetic conducting (PMC) ribb n as in Figure

2.2. Henceforth , the disk will be oriented with the z axis as shown .

The PMC wall approximation would seem plausible with respect to the

fields between the conducting planes since the radially directed surface

current (on the underside of the top PEC plane) must approach zero at

the edge . Of course , this can not be assumed for the external fields

since such a boundary would not allow radiation . However, the rad iated

power can be approximated once the internal fields are known at the

edge. The source of the radiation is taken to be the edge distribution

of the internal fields. Calculating the radiated power in this manner

requires the assumption that the internal field structure is relatively

Independent of the radiated power. The measured quality factor of these

microstrip antennas is high so that this assumption is plausible.

- -~- --—-- -- - --- —~ •--- — - ----- — - -  . . .~~~L .  ~~~~~~~ —.-.- •._~~_ 
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Fi gure 2.1.  A disk element , showi ng coax ia l  and m i cr o s t r i p
feed methods .
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Figure 2.2. The simple cavity model , showing the equiva-
lent magnetic current ribbon.
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Since the antenna is relatively thin , the internal fields are taken

to be TEM. Indeed , for the frequencies of interest , the TE an d TM modes

of’ all orders are well below cutoff and the electric field is

perpendicular to the disk surface , with no divergence .

When excited , the internal field structure of this simple cavity

model can be found using either mode matching or a modal expansion . It

is then straightforward to calculate the stored energy , radiated power ,

internal copper loss and the driving point voltage . When all of these

parameters have been determined , the input impedance and radiation

pattern can be computed . It is because the geometries are simple and

fit nicely into some coordinate system that mode matching and modal

expansion can be used here. This is one motivating factor for

concentrating on a short list of simple element shapes.

2.2 The Internal Field Structure

As ment ioned , the internal fields can be found using either mode

match ing or a modal ex pans ion. Since the numer ical results are found

using a computer , it is advantageous to investigate both methods for

simplicity and/or speed of calculation .

Within the cavity the fields must satisfy the boundary conditions

and the vector wave equation. However , one major difference ~ :tween

modal expansion and mode matching is in the way the individual mode

terms satisfy these conditions. Although both methods use an infinite

set of’ orthogonal functions (i~iodes), a resonant mode expansion requires

that each mode term satisfies the boundary conditions , and that the

7
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total field satisfies the inhomogeneous wave equation. Mode matching

requires that the sum sat isf ies the source condition , and that each term

obeys the source free wave equat ion.

The vector wave equation is well known to be

-‘
~~~ 

2~ .
V E + K E  = j wi iJ — (2.2.1)

where K 1 is the complex wave number in the dielectric. For the thin

cav ity , the source J has some special properties. For the microstrip

feed , the source curren t is assumed to be just n X ii , where H is the TEM

H field of the transmission line. For the coaxial feed , the source is

taken to be equal to the current density on the center conductor , as it

existed in the coax. However , this source is simplified by considering

the current distribution to lie on a cylinder of constant radius. Thus

both sources are considered as rectangular distribut ions in ~ ‘ and as

having no divergence. For simplicity the total feed current is assumed

to be one ampere , flowing into the port. Both source distributions are

of the form shown in Figure 2.3. Therefore, Equation (2.2.1) reduces to

2
V E + K E = j wii J . 

(2.2.2)
z 1 z  z

It should be mentioned that for a coaxial feed , no attempt has been

made to enforce the boundary condition that E must be zero on the

coaxial center conductor. Yet, from the good agreement obtained between

the calculated and measured results of Chapter 3, th is appears to be of

8
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Figure 2.3. The source cu rr ent  distribution used to model
the  coaxial and mi crostrip feeds.
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no major consequence. This could be attributed to the fact that the

conductor length , within the antenna, is very short.

A more rigorous treatment might be to consider the system as a

cylindrical cavity with an offset coaxial feed. The internal fields

could then be found more exactly by matching modes across the annulus of

the feed . However , the point of this analysis is to attempt to obtain

approximate analytic results with a simple but perhaps more complete

model than those found in the literature.

As in most problems of this ty pe, the Green’s funct ions are found

first. Hence , the feed current distribution is taken as a point source

and the resulting fields are convolved with the actual source

distribution used .

The functional form of the source free resonant modes used in the

modal expansion is found from

v 2 ’v + K 2 v = 0 .  ( 2 2 3)mn mn mn

In cylindrical coordinates this gives

1t
mn 

= J
n 

cos(n~) . (2.2.4)

In terms of these modes, the electric field can be expanded as follows:

E =~~~A ‘Vz m ~ 
inn inn . (2.2.5)

-O

• From Maxwell’s equations the H field for each term is

a
10
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~ r~’V -I mn inn
- —i---— 4’ A . (2.2.6)

Since the exterior boundary condition is that H = 0,
4’mn

~n
’
~~mn~~ 

= 0 , (2.2.7)

where a is the disk radius. Therefore , the resonant frequenc ies are

those where (K a) is a zero of J
inn 11

Requiring the total field to satisfy the inhomogeneous wave equation

gives

j~ni16(4’)ó (p 
— 

~ ‘)/ ~~‘ = 
~~ 

A~~~(K ~ - 

~~n
)’Vmn ~ (2.2.8)

m ,n
=0

where

2 2
V ’ V  — — K  ‘V (2.2.9)inn mn mn

from Equation (2 . 2 .3 ) .  Here , I is the source current in amperes and ,

from the symmetry of the disk , the source is taken to be at (p ’ ,4 ’  = 0).

• The fact that the are orthogonal can be used as an advantage .

Indeed if

C K J ’(K a) + C J ( K a) — 0 (2.2. 10)

• then from

11
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f J (K p)J (K )odp
0 n inn q pq

2 2 1 (2 .2 .11 )

+ [Jn
(1Z
mn~~] [~. - 

_
~__~

_
~]J, (m ,n).(p,q)

L0 , otherwise

we can say

r r I s ( 4 ’’) I s ( p  D ’ )j u p l  
. 

~~~~~ ‘V~,~~dc~d4’

(2.2.12)

— K
2
) I I IV

mn’VnqPdPd4’

Performing the integrals gives

2j~~J (K p ’)
A 

2 -) 

n 

2 ‘ n’~ 

(2.2.13)

i~a (1 + Is )J (K a)(K — K~ ){i -•mO n inn 1 mn 
(V a)’‘-‘Un

Finally , from Equation (2.2.4)

E — 
~ 
A J (K p)cos(n4’) . (2.2.1k)

Z mfl 1~ inn
m,n

—o

For the mode matching case, one needs to consider the homogeneous

equation in each source—free region. This is

12
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2 2
V ‘V + K ‘V = o (2 . 2 . 15)

~~ 
~ 

m

where

‘V = J(K p)cos(m4’) or ‘V = Y(K p)cos(m41) (2.2.16)

or any linear combination of Y and J . The source
ri rn

= If(4’)6(p - p ’ )/ p ’ ( 2 . 2 . 1 7 )

can be restated in terms of it~ Fourier components. Hence ,

= 
— 

~~~~~~~ 
~~ ~ 

cos(m4’) (2.2.18)• in ( l + I s  )
mom 0

Therefore , the source current can be considered to be a sum of

cylindrical current sheets located at p =

For the Green ’s funct ions , f(4’) is the Dirac delta . Figure 2.4

shows the two regions of the disk , separated by the cyl indr ical current

sheets. Matching of the fields across these current sheets constitutes

the source condition .

In region 1 , ~~~
‘ a , and

I.

E ~ { A I (K p )  + B Y (K p) I cos(m4j) (2.2.19)
z 1 m m  1 m m  1

P1.. m-0
I.,

At p — a ,

I .’A
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Figure 2.4. The disk, showing a source current distribution ,
the location of the equivalent cylindrical
current sheets , and the two source free regions
of the mode—matching analysis.
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= 0 (2.2.20)

With the orthogonality of the cos (m 4 ’) ,  the result from region 1 is

(A J ‘~ K a) + B Y ‘(K a)} = 0 . (2.2.21)m n  1 m m  1

where the derivative is with respect to the entire argument.

In region 2 , Bessel funct ions of the second kind are not perm issible

since they require a singularity at = 0 . Hence ,

E = ~ C J (K p)cos(m4’) (2.2.22)
m m  1

m=0

Using Equations (2.2.19) and (2.2.22) and requiring E~ to be cont inuous

at the source gives

A J (K p ’) + B Y (K p ’)  = C J (K p ’)  (2.2.23)m m  m m  m m

— where the orthogonality of cos (m4’) has been used .

At the source..‘

p X (H — H )4’ = S (2.2.2 14 )
1 2

From Equation (2.2.6) and orthogonality,

15
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jK flc - A )J ‘(K ~ ‘) — B Y ‘(K p ’)1 1

~~~~ 
m Si IS S i n  

~ — , (2.2.25)
~P L J rrp (1 + 6 )

Equations (2.2.21), (2.2.23) and (2.2.25) constitute a determined

set of equat ions for the 
~~ 

B
~ 

and C .  Using Cramer’s rule for

determ inants yields

jupY ‘(K a)J (K p ’) jwpJ (K p ’)
in •

~~~ 
m - 1  1

A = —  B =
m 2( 1 + ,S )J ‘(K a) SI 

2(1 + 6 )
mo m mo

(2.2.26)
jup { J (K p ’)Y ‘(K a) — Y (K p ’)J ‘(K a) I

m 1  in m 1  in

m-
2(1 + 6 )J ‘(K a)

mc m

Finally, Equations (2.2.19) and (2.2.22) can be used to find the

electric field anywhere in the disk , due to a point source.

The results from the resonant mode expansion and from mode matching

can be checked for consistency by compar ing the E field Green ’s

functions from the two methods. From the theory of complex variables,

two systems are equal if the ir residues are equal and neither system has

poles at infinity .

Consider any point within region 2 of Figure 2.14. Multiplying
2 2

Equations (2.2.114) and (2.2.22) by (K
1 

— K )  and taking the limit as K 1

approaches K~~ gives

a

- _ _ _ _ _ _ _ _



2 2
2jwpJ (K p ’)J (K p) (K — K )

n inn n inn • mmu r n
a2irj 2(K a) Ii — ~~ 21 K -~K I ‘(K a)n mn I (K a ) i  inn n mninn -‘

(2 .2 .2 7 )

jwi~
= — — J (K p)J (K p ’)Y ‘( K a)

2 n inn n mn n mm

But since

2 2
(K - K  ) 2K

1 mn mnlint 
___________ = (2 . 2 .2 8 )

K -~K I ‘(K a) aJ “(K a)
inn n mn n inn

the reiationship simplifies to

2 r
V ‘(K a)J (K a) I 2

• 2 
= 

n mn fl _~~~~~I _ 
~ 

— —-~~----~~---— ( 2 . 2 .2 9 )
~(K a) j  ‘(K a) I 2

inn n inn ~K a)
I.. mn

The Wronak ian relation that

2 
= Y ‘( K a)J (K a) — I ‘( K a ) Y  (K a)  , (2.2.30)7T(K a) n mm n mn n mn n mnSin

gives the requirement that

I “(K a) = J (K a) [1- (2.2.31)
n sin n mm (K a ) I

L m n j

for the two methods to be consistent . But , Equation (2 . 2 . 3 1)  is true

from Bessel’s differential equation , and inspect ion of Equat ions

(2.2.114) and (2.2.22) shows that no poles lie at K “ . Similar

results can be shown for any point in region I of Figure 2.14. Thus,

mode matching and a resonant mode expansion yield identical results for

17
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the simple cavity model where the divergence of the source is zero.

Equations (2.2.114) and (2.2.22) indicate that evaluation of the

internal fields requires a double summation for a modal expansion and a

single summation for mode matching. Hence, it appears that less

computational effort is required when using the results from mode

matching .

The fields due to a source with a specif ic feed width are found by

convolving the Green ’s functions with the source distribution. Thus ,

E = 

~a 
* 
~ 
F
m
(P) cos(m~)

m=O
(2 .2 . 32)

sin (ma)
= ~ F (p ) co s(m4 ’)  (ma)
m 0

Here P ( ~~)  is the unit “pulse” of width 2a , and F (4 ’) is the separated

P~dependent function found in equations (2.2.19) and (2.2.22).

Therefore , the electric and magnet ic f ields are simply the Green ’s

funct ions mult iplied by (sin (ma)}/(ma). In regions 1 and 2 the

electric f ields are then

= sin(m4’ )
E
1 m~0 

J ( K
1

p) + B Y ( K 1
p)} cos(m4’) 

w

(2.2.33)

sin (m$ )
E ~ C J (K p) cos(m4’) - - - - - - — - - -

~~z2 m m lm 0  w

a
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2.3 Dissioation. Radiation, and the Stored Energy

With the E field known throughout the disk , the time—averaged

electric stored energy can be foun d from

W = 
~~~~~

— I l E t dv . (2.3.1)
e 2

V

The forms for the f ields in regions 1 and 2 of Figure 2. 14 are stated in

Equation (2.2.33). Since the fields are separable in 4 ’, eand z, the

volume integrals are easy to evaluate .

Let the electric f ield be represented in the fo llowing manner :

E
~ 

— _if!~~~P (P)cos(m4’),

(2.3.2)

E
2 

= —i-—- ~ Q (p ) cos (m i ~)

Then , the electric stored energy is expressible as

c (wp)2 t I r~’ * 
a 

*
W = 

0 r
8 ~ 

•( I ‘ ~m~n 
~:dp + 1,~ m”n I ’d I

m = O n O L L O

(2.3.3)

2~I cos(m4’)cos(n4i)d4,
0

Since the last integral is zero except when m n ,

~ (uii )~~ti~ ~ r 1,~ a 1
W = Z I I IQ 

2 p dp + j  1~ m l 2 p~ )j  ( 2 .3 .~4)
e m=o L~ 

m 
~~
,

Each integral in this equation can be evaluated in closed form since the

a
19
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and are just
sin(m4 ’ )

P = {A I (K p) + B Y (K p ) }  V
m m m  1 m m  1

w
sin(m4’ ) (2. 3 .5)

Q = C J ( K p) w
m m m  

1 
(l + I s~~)rn4’

where A
~~

B and C
m are given by Equation ( 2 . 2 . 2 6 ) .  It is well known

that

I U 2(~ p)pdp = 
P2 

~~ ‘( K 2

a tm i. 2 L iS 1
( 2 .3 .6)

- 

+ [1 - (K p ) 2 ]  [u 2 K P)]J~

where U is any linear combination of .i and Y . By taking thein in

summation inside the integrals of Equat ion (2.3 . 14 ) , the electric stored

energy can also be evaluated using a numerical quadrature. Thus,

c c 1Tt (t~p)
2 r0~= 

o r I I 
~ IQ 12u + Is )pdpe 8 in mo

L° m=0 (2.3.7)

a
+ I 

~ lPm
l2 (1 + tS

~0)PdP
p m=0

The power dissipated in the dielectric can be found from

= ~ I I E l~ dv , (2.3.8)
v

But this is just

= 2uIs W (2 . 3 .9)

where Is is the dielectric loss tangent.
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The copper loss is approximated by initially assuming that it does

not change the internal field structure . Therefore it is calculated

using the internal fields derived with r fectly conducting boundaries.

Again , this method is plausible since the copper loss is very small with

respect to the reactive power within the disk . The copper loss is

related to the H field tangent to , and the E field normal to the copper

boundary .

In a good conductor the skin depth is

= (2.3.10)

where ~ is the conductivity in mho-cm . For the loss due to the

tangent ial H f ield , the current density (~J )  within the copper is

assumed such that

I I dz = J (2.3.11)
0 v s

where -

~~~ 

is the surface current density that would exist if the

conductivity were infinite. iv is the unknown volume current density

flowing parallel to the surface , with form

l~~F = lj
0 le~~~

’A 
. (2.3.12)

Therefore ,

21 
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Ii I = ~1 IA  (2.3.13)0

so that

— z/A
I e

I - = (2.3.114)
v A

Since the f ields are assumed to be TEM ,

l~~l = H J (2.3.15)

The power dissipated in the copper is

= —
~~-— I l -~ 

2dv (2.3.16)
CU~ ‘~ V

so that

a 2,f
r = —

~~
-— I ~~~~~ f I ~J ~ - (2 . 3 . 17 )

CU1 oA 2 z 0  r—0 •~0 
S

But this is just

p = ---~----- w ~ ( 2 . 3 .18)cu1 cAtti h

where the factor 2 accounts for both top and bottom boundaries.
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The copper loss due to the E field is found using the fact that the

norma l D field is continuous at the copper boundary . Since the

permitt ivit ies of the dielectric and copper are

L U C  -d o r

(2.3. 19)
r 0

~ 
=

~~~~
- 11 + —  ,CU 0 L j t.i1

0

and for a good conductor

> >  1 (2.3.20)juc

then

j wE:
E ~~~~~~~~~~~~~ E ( 2 . 3 . 2 1)cu a d

The general copper loss is

P — a I IE l 2 dv (2.3.22)
cu

v

Since the B field in the copper varies in the z direction as

IE I = e~~
’A 

(2.3.23)z c u

the copper loss due to E
~ is

c ui) 2 21! a
P = — 

o r _~ I I IE l 2 ds . (2.3.214)
CU 2 ‘3 

•~~~ p 0  d

~ 
1. 

-

. 

‘ 

•~~‘••-~~ 
. — . — _ -..- . -

~~
=---

~~
---—

~
-— — - - . - ,- •- - - _ 

~~~~~~~~~~~~~~~ 
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where , again , the factor 2 accounts for both top and bottom boundaries.

This is expressible as

A 2K ~
‘W

1 e
p = (2.3.25)
cu2 otp A

The total power loss in the copper is now seen to be

2W + A 2K 2W
1 e

= —~~~-~--~~
---—-— —— (2.3.26)

However , the skin depth is so small that the loss due to the tangential

H field is the only one of significance. The total copper loss is then

approximated by Equation (2.3.18).

The radiated power is found using the B field at the edge of the

disk. From Equation (2.2.33), the f ield at the edge reduces to

J (K p ’)cos(m4’)sin(m4’ )—juip m
E (a,4’) = —— ______________ -— (2.3.27)

Z 1TK a j  ‘(K a)(1 + Is
m=0 in iso w -

where 4’ is the azimuth angle with respect to the source . Using a

Huygen ’s surface over the entire cavity , and assuming tha t negligible

currents flow on the exterior surfaces of the copper boundaries ,

= n X E z  (2.3.28)

where K is an equivalent magnetic current ribbon.
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The far field electric vector potential is well known to be

= -2e ° / f K e ° ds’ (2 .3 .2 9 )

where the coordinate system is as in Figure 2.2 and the factor 2

accounts for the ground plane image . Assuming the thickness to be small

gives

j K r  21T jK (x ’sin(o)cos(4’) + v ’sin(O)sin(4’)}
= 

2

~~r 
J K e  0 

ds ’ , (2.3.30)

where the primed variables are source coordinates.

The vector potential can be found as the superposition of its

rectangular components. Since

= K ~ (2.3.31)
5 S

and

= 
~~~~~~~~~~~~~~~~~~~~~ + ycos (4 ”)  ~ ( 2 .3 .32 )

then

—jK r

- 

-jtwpe ° J ( K 1p ’ ) s in ( i n4 ’ )

21T2rK 1 m—0 J ‘(K 1 a)(1 + 6 )m~- in iso w
(2.3.33)

2ii - - jK asin(O)cos(4”—4’)
I cos(m4’)’ycos(O’) — xsin(4”)}e ° d4”
0

k   
~~~ 

— —
- 

- . 
~
—--

~~ ...~~ I1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .  ___



Lett ing

-jK r
— j2wpte °

C(r) = — and ~ K
0
a sin(n) 

~ (2.3.314)

and using the fact that

e
jU cos(4’) 

~ (j )
inJ ( ~ )e iTh4 ’ 

, (2.3.35)
in=—~~

the far field vector potential reduces to

IF 1 J(K 1
p ’) Si f l (i n4 ’

w
)

X 

~~~
= -C(r) ~~ — - --- -- -- ----- —— — ---- -

~ 

Fyj  m 0  J ’(K
1
a)(1 + 6 0

)(m4’)

(2.3.36)

I (~) 2n Isin(4 ’’)l
2 

n~O 
(j)fl 

~~ + I s )  
~ tcosf4”)S 

Cos(m4’ ) cos(n(4’ — $)} d4’’

By the ort hogona lity of the cos (m~), Fy and F
~ 

reduce to

C(r)n 
[Jo~ f 

J 1 (K1p) +
I J 1 ’(K 1a)
L ( 2 .3 .37)

_______ 
+ ~n— u~~’~1 ~~~~~

n~ 1 
(J)

n
J( ) 

[~~~~~~
(KTa) 

— (1 + 6~~) J l ’(K l a)j tcos(n4 ’)
~~

and can be written more simply as

~;J= 
~~ f:: :~:~::~J (2.3.38)

a 
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In the far f ield

(2.3.39)

so that

E = _JK
0{ 

z sin(O) [cos(4’)F - sin(4’)F]

(2. 3. 140)

+ y cos(O)F — 2 cos(O)F].

In polar coordinates , the E field components are

E& — cos(4’)F 
— sin(4’)F E = 0

(2. 3. 14 1)
E
4’ 

—cos(’I) [ cos (4 i )F  + s i I i ( 4 ’ ) F
]

Once F and F; are known , the far electric field can be found for any 4’

and 0 . From this , the radiation pattern can be calculated . The

radiated power is found from

11/2 21! - 

.

= ~ f E J 2 r~
’ s in ( t ~) d f ~d4 ’ ~ 

- (2 . 3 .~42)hb o O=0~~=0

where

* *1EV — E E 4. E E + E E_ . (2.3.143)
X X  y y

a

4  
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The integral over phi can be carried out in closed form . With

orthogonality , the expression for the radiated power can be further

reduced and the Integral over 0 can be numerically evaluated .

2.4 InDut Imoedance and the Distributed System

In general , the input impedance of a rigorously analyzed system can

be found from -

P + j2uiO-J — W )
1 e ~ (2.-’I .l)

Z 2In V

or

P + j2w(U — W )
= 

e _ _
~~~~ (2.14.2)

in

or even by

z ~~~~~~~~~ (2 . 14.3)
• in I

Here , P is the power dissipated in the system , V is the driving point

voltage , I is the source current , is the driving point impedance

with no other ports on the disk , and We and W are the time-averaged

electric and magnetic stored energies . However , for the disk antenna ,

the copper loss and radiated power are calculated using perturbation .

Therefore , the above equat ions can not be ex pected to agree since the

input voltage is insensitive to losses calculated in this way. In fact

a
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the rad iated power may be much larger than any other loss , so that the

disagreement between the above equations can be severe .

An extremely efficient method for calculating the input impedance

can be seen by considering that measurements show the microstrlp

antennas to have a high Q. Analytically, the quality factor of any

system Is defined as

= 
w • Stored Energy (2 . 14. 4)
Tota l Power Loss

Since the measured Q is very high , the origin of the power loss is

unimportant. This Indicates that the losses can be redistributed with

little effect on the internal field structure . Since the input voltage

is directly related to the E field at the feed , Equation (2.4.3)

indicates that the input Impedance will be relatively unaffected by such

a power loss redistribution . This result may be paralleled by the

simple high Q RLC tank circuit whose input impedance is nearly

independent of where the loss occurs.

Once the copper , dielectric , and radiated power losses have been

calculated as in Section 2.3, they can be distributed throughout the

dielectric . The system will then consist of a perfect cavity with a

modif ied lossy dielectr ic.

The losses are redistributed by modifying the dielectric loss

tangent. From Equation (2.3.9), the modified loss tangent is defined as

p +p +p
cii d6

eff 2uiW .2.14.5)
e

a
A 

___  
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The complex wave number for the modified dielectric is then

K1 ef f  wJ(l — 

~
6

e ff ~~’~ 
(2.14.6)

and the E field can be reexpanded using Equation (2.2.33). The input

impedance is then efficiently evaluated using Equation (2.14.3).

The input voltage can be found using the E field from either of

regions 1 and 2 , and the fact that

zt - (2.14.7)

However, since the voltage is averaged over the feed width (due to the

presence of the feed conductor) , the final expression for the input

voltage is

sin 2 (m4 ’ )
= C J ( K 1 ff0

’) (,)7
w 

(2.14.8)

It is interesting to note that the quality factor of the disk antenna is

just the reciprocal of the effective loss tangent. Indeed ,

w (W + W )
(2.~4.9)

T

However , t
e 

- W at resonance. Thus , Equation (2.14.5) gives

2wW 1
Q = —

~~
---

~~~ 
— —

,~~
— 

. (2.14.10)
T
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This relationship can lead to some major computational savings since

the qual ity factor is relat ively independent of the feed location. Near

the m—th resonance , where one term dominates all ot hers, it is clear

that

I (K1p ’)
E(p—a) J ’(K a) (2.4.11)

But the radiated power is proport iona l to the square of the electr ic

f ield at the disk edge so that

r~ (K1p ’)~ 
2

[J

m
t (K la)j 

(2.4.12)

Also

T (K1p ’)] 
2

[ r n ~~~ , (2.14.13)

with both copper and dielectric losses being proportional to W .

Therefore , as long as the resonant term dominates all others in

magnitude, the effective loss tangent will remain nearly constant. This

indicates that one effect ive loss tangent can be used to f ind the input

impedance for any feed location where the dominant mode is excited . The

same loss tangent can be used for any frequency near resonance since one

mode is still dominant. This means that the radiated power and electric

stored energy have to be calculated only once for all of those data

points. The magnetic stored energy is never needed since the input

impedance is equ ivalent to the driv ing point voltage when the source

a t
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current is assumed to be one ampere.

2.5 The Disk Antenna with Two Ports

The general multiple—port disk of Figure 2.5 can be used as one of

many elements in an array of microstrip antennas. Another use for

multiple ports is in exercising some form of  mode control by placing

shorting studs (short circuited ports) about the disk . The input

impedance of a multiple—port disk can be approximated by using the

simple model of the previous analysis. However, for simplicity ,  only

the two port disk is analyzed here since the analysis readily

generalizes to any number of ports. -

A two—port network is described by

I v 1~~ 1z 11 z 17~ 11 11
I I = I I I 1 (2.5.1)

L v 2 J L z 21 z 22 j  [12j

where the currents are directed into each port. The open circuit Z

parameters have been chosen since all are calculated with one of the

port currents equal to zero. For the simple cavity, a port with no

current is the same as no port at all , so that each parameter reduces to

a one-port calculation. The Z parameters are

V .
z = -~~ (2.5.2)j~ I .

-~ 1
~
=0, k~i

so that Z~~ is equivalent to the voltage that exists at the location of

the i-th port with that port removed (when I is taken as a one ampere

- 
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Figure 2.5. A general m ult i port disk antenna.
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source). From equation (2 .2 . 33) ,  the voltage is known for any location

on the disk , and by reciprocity , Z 12 Z 2 1 .  From Equation (2 . 5 . 1 ) ,  the

input impedance at port 1 with a loaded second—port is

V
1 

(z 1~Y
z . = -— - = + -

~~~~
- - --

~~~~
- —- - 

, ( 2 .5 .3)
in I

~ 
11 

~~~ 
—

where is the load impedance presented to the second port .

2 .6 Conver&ence Acceleration for Series Associated with the Disk

The fields in the disk are represented by an inf ini te  series as

shown in the analysis of Chapter 2. It has been found that the use of

asymptotic forms , instead of truncation , leads to more accurate analytic

results for the input impedance. Simple asymptotic forms have been

found for both the input voltage and the electric stored energy.

Radiation due to the non-resonant modes is negligible so that an

asymptotic form need not be found for the radiated power.

The advantage of using the asymptot ic forms for the ta il of a ser ies

is that a closed form expression , or one which converges more rapidly

than the original form , can often be found . Using Khummer ’s well known

transformation , any series S , as in

p

= 
uhs 

~ A ( 2 . 6 . 1 )m

can be rewr itten as •1
a 
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p 
-5

= 
u r n  

~~ rA — A 1 + A (2.6.2 )
2~~~m l L i n  mj m 1  ~

where the and A
m are the actual  and asymptot ic  terms respectively.

As indicated , when the upper limit (P) tends to infinity the sums S
~ 

and

S
2 become identical . However , by using Khummer ’s transformation , the

rate of convergence has been greatly increased . Therefore , truncation

of S
2 

will cause less error than the truncat ion of S .

Investigation of the equations for the internal fields shows that

the asymptotic terms must use the large order approximations for the

Bessel functions . For large is , the Bessel functions hi v I - - l : -y r ~ ç - -

t ot ic  f o r o ~ of ’

m

-
t ,~. 

1

f ~ 
\~2m)

(2 .6. 3)

2 1
-m

fl 1 ~2my ~ m

From Section 2.2, the electric fields in regions 1 and 2 of Figure

2.14 are known. Substituting the asymptotic forms for the Bessel

functions gives

1- ,1
m 
I ~ 1

m 

~ 1

m 
c o s ( m4 ’ ) sin(m4’ )

E 1 ~ 2 r m  [
~ J L a J + L ~ J ]

(2.6.4)

~~~~~~~~~ ~
, 
m{ 

~~ , m 
a 

m} 

co s (m4 ~) s in(m4 ’ )

E 2 m 2ii in a a + 
(rn4 ’ )

4
’ 
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In simplifying to these final f orms , the relations

r -, rn
I m + I i  I s  — I i

e = 
u r n  HFId hUh I = 0 (2.6.5)m L UI j  m~~” L ~ J

were used . The asymptotic form for the electr ic stored energy is foun d

from Equations (2 . 6 .5)  and (2 . 2 . 3 3)  to be

(‘~e)m 
~~ E o1

r {(P~~)
2 [~ + 

(

~~

)

2U~ 
+ 2(a_P,)(

~
_) 

~~ 

si:~ (:4’1,) ( 2 .6 .6 )

This is largest when 0 ’ : a , or

2 rc a I sin~ (m4 ’ )
o r 

- ,  
~~~~~~~~ 

p— 
• (2 . 6 . 7 )

~~ejm 211
2 L m 4 ’

Even for this largest case , 
~~ 

is always large enough so that the (W e
)

m
diminish rapidly with increasing m. Therefore, Equation (2.6.1) is used

to calculate the electric stored energy . Since convergence is very

rapid , the series is simply truncated at some order N. In the actual

computer program , the series was truncated when the last term added was

less than .05% of the accumulated total .

The asymptotic expressions for the Z parameters are found from

Equation (2.6.4). As pointed out in Section 2.5,  the Z parameters all

reduce to voltages which , in turn , reduce to electric fields . Averaging

the voltage across the feed width gives a with asymptotic form

, r —

—jw1it / ~ I r~ifl(~. )1
(z 1 ‘)m “

~ 

-

~~~~

-—- -- - [ ~

---

~
--) + 

1] ~~~~~~~~~ . (2.6.8)
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For the cross—port parameters , the asymptotic form is different for the

two regions of the disk . When p . (where the j-th port is the

source por t) ,

jiiPt ~~~~~ ~~~~~~~~~~~ cos (m4 ’. J s in( r . :4~ j s in ( rn 4 ’ .)
fz .~~ ~

--
~~~I ~~~ + J

, 1  
- - - -  ~~~~~ (2.6 .9)

\ ij 1m 2ii m L 1 J rn q - -I W I W I

Otherwise , the L 1~~ / 
~ 
term is inverted . Inspection of these equations

shows that the rate of convergence decreases as . approaches ~~~~~ ari d

as both and 0~ approach a.

Rapidly converging forms can easily be found for these asymptotic

expressions when = = a, or when 
- 

. For these cases , at
i .j I j

least one term in the brackets of Equation (2.6.9) is identically 1.

For that term , the sum of the asymptotic series can be evaluated quite

rapidly, using Clausen ’s integral. Indeed ,

sin(m4’ ~) sin(m4’ ) cos(m4’1 - ) 1 r c o s l r n ( 4 ’  - - 4’ 1~~~~S.
.. _

~
_
~!L~
__ 

~~~ - 
~~~~~~~~~~~~~~~~~~ 

~~~~ _ _ w •
L — 

44 ’~~~ ’ I - -

m=l m 
~~ 

-, - Im = 1
W W L

cos{m(4’ — -
~ • +

+ ~ 
—— - - - — --~~-- —— - -~

‘- —- -- - -- --- . (2.6.10)
rn=1

cos{m(4’ 1 + 4’ - 
4’ i~~ 

cos{m (4’ 1 + 
~ 

- +
w ___w ’  w

+ —
~~~~~~~~~~

—
~~~~ 

— - - — —— — — -i \ /  - - - - - - -  - -
UI 

- • 
intn~l m=l

But , each of the above sums is known to be the integral of Clausen ’s
41

integral , found in any major handbook . Numerical evaluation of these

sums is straightforward and is outlined in Appendix C.

When the rad ial feed locat ions ar e not equal , the series of (2.6.8)

and (2.6.9) converge at least as fast as a geometric series. For these

a
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cases , is evaluated as in Equation (2.6.1). However, for cases

where the radial feed locations are nearly but not quite equal , the form

p q

2 . ~~ A + A (2.6.11)
ij - 

ni In
m-0 m p

is used to obtain Z - since the A are easier to evaluate than the A
ij is
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CHAPTER 3

ANALYTIC AND EXPERIMENTAL RESULTS

3.1 Determination of 6 and 0 To analyze the microstrip disk , the copper

conductivity and dielectric loss tangent must be specified . The

conductivity of copper is well known to be 580 Kmho—cm , and the

dielectric loss tangent is given by the manufacturer of the dielectric

in the form of a frequency dependent graph. For convenience , it is

part ially reproduced in Figure 3. 1 . However , when using these val ues to

calculate the input impedance locus , thè .results are substantially in

error.

To illustrate the point , a microstrip disk with a radius of 6.7 cm

and a thickness of 1 .5 mm was fed at a radius of 3.35 cm , and analyzed .

The theory indicates the lowest resonance to be near 810.61 MHz since

this is where the first minimum of J ’(K
1a) occurs. For this frequency

the loss tangent is given by the manufacturer as 0.00085. The Smith

chart locus for was calculated using the manufacturer ’s loss tangent

and the conductivity given above. For comparison , the calculated and

measured results are shown in Figure 3.2. These results indicate that

more loss exists in the system than the theory presently accounts for.

• At th is point it was decided that the copper loss and loss tangent

should be determined experimentally .

-; To experimentally determine ~ and 6 , a bona—fide rectangular

cavity was constructed by closing the radiating aperture with copper

foil , as in Figure 3.3. With the bona—fide c av i ty ,  the effect ive loss

a 
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Figu re 3.1. Manufac tur ers  loss tangent data for Rexolit e 2200
(Atla n t i c  Laminates) .

a

L ~~~~~~~ ~~~~~ I ~~~~~~~ ~



.4- _ _ _

790

792.9 797.65

795

a 6 . 7  cm.
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Figure 3.2. A set of inpu t impedan ce r e s u l t s  u s i n g  thc
manufacturer ’s loss tangent v a l ue  • and the
standard copper cond u ct iv it y .
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Figure 3.3. The bona—fide cavity used to measure the loss
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tangent is

(P + P .)
6 = -__C U U  (3.1.1)
eff 21jW

e

where the radiated power has been eliminated . The resonant Q is still

given by

Q = . (3.1.2)
e f f

Since and 6 are given at resonance by

2~oW 6 2 W
= 

e and 1_ 
= - (3.1.3)

cu 2t ~

Equation ( 3 . 1 . 1)  leads to

= ~~ + 
-
~~~~~ . (3.1. 14)

Q 2t

The quali ty factor and dielectric thickness can be measured , leaving 6

and ~ ( the skin depth) as two unknowns . By constr uct ing two similar

cav ities with different thicknesses , and measuring their quality

factors , 6 and ~ can be determined from the result ing simultaneous

equations . Although Equation ( 3 . 1 .3 )  neglects the loss in the copper

foil used to seal the cavity, it is assumed that this extra loss is

-
• 

negl igible since the cav ity thickness is muc h smaller than any other

dimension .
*1

r
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Once the skin depth is determined as above, the conduct ivity is

found from the relat ion

A = (3 .1 .5 )
WI-j o

Unfortu nately,  the manufactu rer’s data indicate that the loss tangent

(for the Rexolite 2200 dielectric) varies with frequency . For this

reason , A and 0 must be redetermined when the frequency is changed

substantially .

The rectangular cavity experiment was performed for a resonant

frequency near 428.00 MHz and the results are shown in Figure 3.14. The

intersecting lines are each generated by

A = I — (3.1.6)
Q 2t

With the materials available , cavity thicknesses of 1.5 mm and 14.5 mm

were constructed. Unfortunately, these thicknesses give a set of

equations that is not well conditioned . Because of this, the Q was

measured several times. The locus of points for the upper and lower

limits of Q were then plotted . In Figure 3.4, the resulting region of

intersect ion shows the uncertainty of A and 1 . From the centroid of the

shaded area , A — .00083 and A — 9.2 urn . From Equation (3.1.5),

= 69.9 kaho—em . This method can be performed for ~ tch resonant freq-

uency .

From these results the effective conductivity is much lower than the

table value. This discrepancy way be due to surface roughness or

a
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Figure 3.4. Experimental results for t he  de termina t ion of
the loss tangent and the copper conductivity .
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possibly to a lossy bonding agent.

3.2 Variation of Inmut Imoedance with Radial Feed Location

From the simple cav ity model of Chapter 2, the dominan t term

contr ibution to the resonan t input resistance can be predicted to vary

as

(Z ) = ~ 
2~~ p ’) , (3.2.1)

-
~ ll pq p pq

where (pq) is the resonant mode index . From the resonant mode expansion

the dominant term is

.i ~(K p )
q pg 

- _ _ _ _

‘ “pq r q
2 

~~ (3.2.2)
(K 1 - - — K

pq
2 ) Jq

? (K
pq

a) L — 0(a)2] (1 + S
pQ)

Since the dominant term is the only one that contributes a significant

real part , equation (3.2.1) is seen to be true. The theory was tested

for disks of several different sizes, and the agreement between

calculated and measured results was very good. In particular , a disk

with a radius of 6.7 cm and a dielectric thickness of 1.5 mm was

coaxially fed at the different points of Figure 3.5. For the analysis,

a dielectric loss tangent of 0.00135 and a copper conductivity of 80.2

Kmho-cm were used , based on the measured cavity results of Section 3.1.

The feed width was taken to be the diameter of the coaxial center

conductor. Some of the more interesting input impedance looi are shown

in Figure 3.6. The resonant input resistance is plotted against radial

a
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Figure 3.5. Feed location used to determine t he variation
of the resonant input impedance with radial
f eed location .
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Figure 3.6. Calculated and measured first—mode input
imped ance loci for several radial feed
locations on the disk.
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feed location tar all eight feed points , as shown in Figure 3.7. As

seen , the calculated and measured results are in excellent agreement .

For the lowest frequency mode , the cavity model of Chapter 2 has

been successful at predicting both the resonant input resistance and the

shift of the entire locus above the real axis of the Smith chart.

However , for the higher frequency resonances , the theory predicts too

much added positive reactance , although the measured and calculated

resonant input resistances still agree very well. Some results for the

second resonance of the disk of Figure 3 .5 are shown in Figure 3.8. The

theory predicts too ‘
~iuch shift above the real axis , regardless of the

radial feed location . In Figure 3.9 the resonant input resistance is

plotted against radial feed location for both measured and calculated

data . This Figure shows very good agreement and indicates that the

losses are correctly accounted for. For a given radial feed location ,

the added reactance is a funct ion of the feed width , as Equation (2.6.4)

indicates. By increasing the feed width from the value that gave good

results at the f irst resonance , the results from the higher resonances

can be made to agree in the amount of locus shi f t , wi thout  chang ing the

resonant resistance .

As ment ioned in Chapter 2, no attempt has been made to satisfy the

boundary condition that E be zero at the surface of the coaxial center
z

conductor . It may be that this has contributed more error to the higher

frequencies than to the lower .

The results for the higher resonances indicate that the effective

feed width of the coaxial line needs investigation. From the boundary

condition at the center conductor , the electric field near the feed has
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Figure 3 .7 .  The variat ion of first—mode resonant input
resistance with radial feed location .
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the form shown in Figure 3.10. It is not easy to see how this field

distortion affects the input impedance contribution of each mode . For

the high—order modes, the coaxially fed antenna may have to be

considered as two coupled coaxial cavities as suggested in Section 2.3.

3.3 Variation of Irtout Imnedance..wjUt Shprtin& Stud j.&cati.on

One disadvantage of the single—port disk antenna is that the feed

must be taken inside the disk to vary the input impedance.

Consequen tly ,  the feed must be coaxial. In an array of such antennas ,

it would be more convenient to feed each antenna with a microstrip line .

This would eliminate a lot of unwanted coaxial cabling behind the

an tennas .

The simple cavity model predicts that a two-port disk antenna can be

edge—fed and still have a variable input impedance such as that

discussed in Section 3.2. From Equation (2.5.3), if the second port is

shorted then

z = — - - (3 .3 . 1 )
in 1.- ’

Considering the dominant mode contribution , this is

r 1 s i n (m ~ ~
)

Z A I j  2(K fl i ’) - J (K ‘) c ~ s 2 (m ~ ) I - - -  - ( 3 . 3 . 2 )
~~~~~ ‘~~ L p pq p pq - 12 (m4~~

)

1

If both ports are at the same radius , then

-a
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Figure 3.10. The electric field near a coaxial field .
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z J 2 (~ ~ ‘) sin 2 (m cp 12 ) ( 3 .3 .3 )in p pq

Thus , the resonant input resistance is seen to vary with radius and with

separation of the two ports. For the edge—fed case ,

Z~~ J
p
2 (K

pq~
) sin2(m~ 12) 

~ 
(3.3.14)

where the shorting stud is also on the edge .

Equation (3.3.14) was tested with a microstrip—fed antenna , with a

radius of 12.68 cm. The f i r s t  mode resonance is near 1420 MHz . Figure

3 .11 shows the disk and the set of short locations used . Some

interesting impedance loci are shown in Figure 3.12. Although the

calculated shift of each locus is incorrect , the resonant input

resistances match very well. Figure 3.13 shows the plot of maximum

input resistance versus separation angle , 12 
The agreement is shown

to be very good , but the fact that  the impedance loci are shifted

incorrectly indicates that the feed width  of the first and second ports

may need to be modified .

Another interesting result of the two—port antenna is that

additional poles are introduced into the system where Z
1~ = Z 2 2 ,  as

Equation (2 . 5 . 3 )  indicates . For convenience that equation is repeated

below.
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~1~l 2 1
= Z n + 

/ .7 (3 .3.5)n ~~~ 22 ’

When ZL2 is a short circu it , a resonance should occur near where Z ,2

passes through zero. However , for an edge fed disk , Z 22 is equal to Z~~

when the feed widths are the same . Note that  the “ zero” impedance at

port 2 is converted to a “pole” at port 1 . This was verified both

experimentally and analytically . For the disk of Section 3.2, the first

resonance of Z22 occurs at 810.61 MHz. However , as shown in Figure

3.14, the single—port input impedance first passes near zero at about

860 MHz. The result of positioning a short circuited port at ~ = 45° is

also shown in the figure. It is seen from the figure that a second

resonance has occurred near 860 MHz , as predicted by the theory . That

this resonance can be useful is shown in Section 3.5, where the

radiation pattern is investigated .

3.4 A Circuit Model For the Disk Inout Irnoedance

In the analysis of the disk , it was shown that mode matching and a

resonant mode expansion give identical results for the simple cavity

model. From the resonant mode expansion , it is seen that the input

impedance for a one-port disk near resonance is

jwA
pq

= 2 2 
+ (non—resonant terms) , (3 . 14. 1)

K - K
1 mn

where (pq) is the resonant mode index . Near resonance , the f irst term

___________ ____________ ____________ ____________ _ 
_______ - - ~

-~ —~~~~~- JiI~~~iii~ T~ T ~~~~~~~~~~~~ - . - -



- -~~~~~ -----~~~~ ---—----- 

+ +

/ •~~~~~~\ 
+%~~~~~~~~~

~~~~~~~~~~~~ \/ .,
~ +

/ ‘S ‘I _ _ _  ‘ 
S.. t

~_ _ _ _  ‘/ / —
_.

~~~~~

--.----‘-•.- j:~
g.+— V~~~~ VI ~~~~~~~~ \ ‘ 

-....
~~_

I / ~~~~~~~~ ~~ s
I , _,p 

I

/ + Z ~I +I i / I’I a / I’

I I /
867.65 Mh z  / \ 852.65 MH~

(~
i ( 797.65 MHz 

~ +

I ~ I
’ 797.65 MHz

1+ ‘ 
I

\ ~~
. .‘

~
‘.. \ two—port

‘~ 
‘+ 

%
. \ locus

‘ \ s. \  /

I -- 4!
\ \ ~k- .. /
V .f -- /

\ ~~+“N one—port /
\+

~~~~~~~~~ cus

\
a 6.7 cm.
t0.15 cm.

~ =2.62r

x x computed points

5.0 MHz increment

Figure 3.14. Two impedance loci showing the zero—to—pole
conversion caused by a shorting stud 45 degrees
f rom the feed po r t .

- . 

1
4 60 

.e~. 
- •~~~

- .1:. ’ 
~~

- :

- -~~~~ ~~~~~~~
-
~
-- —a 

~~~
- - —~~

-
~~~~ = ~~~~~~~~~~~~~~~~ 

— -
~~~~~~~~~ .4



_
~~ -

~~~~~~~~~~~~~~~~~~~~~~ -.

in the above equation dominates all of the rest. Considering the

dominan t term alone , the input admittance has a nearly constant

conductance over the usable bandwidth , as does a parallel RLC tank

circuit. The Smith chart locus for such a contribution is shown in

Figure 3.15.

The analysis of Section 2.6 gave an asymptotic form for the

high—order non—resonant modes, in terms of the mode matching results.

From Equation (2.6.10) and any handbook on Clausen ’s integral , it is

evident that the sum of the higher—order non-resonant asymptotic terms

contributes a positive reactance to the input impedance. Experimental

results show that the input impedance locus is nearly a perfect circle

and is always shifted toward inductive reactance for the resonances that

the laboratory equipment is able to examine . The result would seem to

be that the sum of all of the non—resonant terms , including the

lower—order ones, contributes a positive reactance to the input

impedance.

Since the frequency band of inter est is very narrow , the positive

reactance can be approximated as a linear function of frequency, and

thus as an inductive reactance. Adding thi s inductive reactance to the

dominant mode impedance gives the shifted locus in Figure 3.15.

In Sections 3.2 and 3.3, it was shown that the resonant input

resistance of the dominant mode contributions of the one-port and

two— port disks could be varied by changing the port locations . This

behavior is quite like that of a tapped RLC tank circuit , where the tap

location is changed . Considering these results, a simple circu it model

for the one—port and two—port disks is shown in Figure 3 .16.  Equation

I
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(2.6.14) indicates that the series inductance in Figure 3.16 is a

function of the feed width and radial feed location. Since the sum of

the non-resonant contributions has a factor w, the importance of these

contributions would seem to be a direct function of frequency. Indeed ,

the loci for higher resonances are shifted above the real axis more than

those for the lower frequency resonances are. However , experimental

results indicate that the shift above the real axis is less than the

factor would cause. From a term—by—term inspection of the input

impedance , some term s which resonate below the dominant term contr ibute

negat ive reactance .

In Figure 3.17, the points of max imum res istance are shown for four

of the radial feed locations of Section 3.2. Although the points seem

to lie on a line of constant reactance , Figure 3.18 shows that the

reactance increases with increasing radial feed location , as Equat ion

(2.6. 14) indicated . The results are somewhat obscured because the feed

width is not actually constant when the feed is moved radially .

From this simple circuit model , “resonance” of the antenna can be

defined as the point of maximum inDut resistance. This definition allows

the antenna and the RLC tank of Figure 3.16 to resonate at the same

fre quency, since adding reactance to the RLC tank locus does not change

the frequency of maximum input resistance , as seen in Figure 3.15.

3.5 Radiation Pattern investigation

The far f ield radiat ion patterns were measu red and compared to

calculated results for the one—port disk antenna. The patterns for the

6~

A 
_ _   _ _ _ _ _ _ _ _

5.— — —. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



-_ - - -5-- — -5- 
- -

~~~~~~~~~~

o Measured

~ Calculated

I
I # 7 #~ #

Fi gure 3. 17. The locus of r esonant  i n p u t  impedan ce  p o i n t s
for d i  f fe ren t rad I a I feed I ~wa t I Ofls

f ’ ’
’

I • —
~~~~ 

— 5.— 5. - . — - 
_ . - — -_ -~~~~ 

-- 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~ T~



~~~l4 _
x- -x Calculated

a,
C.)
C
0 -C
0(I)
a,

ai lO-
V
0

c 8 -
0C
E

.
~~~0

0 4 -C0
C.)
0
a, 2 -

a.

-
~~ 0 I I I I I I I I

0 I 2 3 4 5 6 7 8 9 x a/8

Radial Source Location , p

Figu re  I . I M .  The v a r i a t i o n  of In p u t  reactance at the
dominant mode resonance for  d i f f e r e n t  radial
feed locations .

-a
66

- - - - - , - . F

- - - - — - - - ---- - 5. —-  - -—

— 5 .- — 

—— 

— —5.- — 5. 5._~~~~~~~~~ — — — -_-_ _‘_L.& ~~~~~ — ~~ 
.___ _~~~__ %_~~~~__—



_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~- — - ~~~- -

multiple—port disk can also be analyzed , although they have not yet been

calculated . The radiation patterns are calculated from equation

(2.3.141), where the E field aperture distribution is assumed to be z

directed only .

For the disk of Section 3.2, the first resonance is near 810 MHz.

The calculated and measured radiation patterns are shown in Figures 3.19

to 3.214. These data indicate that the pattern bandwidth is greater than

the impedance bandwidth. Qualitatively, the calculated and measured

results matc h quite well .  However , no attempt was made to take the
4

effects of a finite ground plane into account. For frequencies near 810

MHz , the ground plane is about 12 wavelengths on a side.

For a part icular  mode , the radiation pat tern is substant ia l ly

independent of the size and resonant frequency of the disk , as long as

the relative permittivity of the dielectric is held constant. With this

in mind , the second mode pattern was investigated using the disk of

Section 3.3. For this disk , the second resonance is near 710 MHz. The

calculated and measured patterns are shown in Figures 3.25 and 3.26.

Again , the agreement is seen to be quite good .

The measured results have consistently shown higher cross—polarized

radiation than the theory accounts for. This might be expected since

the E field at the edge of the disk is not exactly z directed , as was

L assumed with the simple cavity model.

Although no radiation patterns were calculated for a multiple—port

disk , some were measured for the disk of Section 3.2. A shorting stud

4.. was positioned on the edge of the disk , 145 degrees from t he microstr ip

feed . The angular reference for all two—port measurements is taken to
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Figure 3.19. First-mode radiation patterns for the 6.7 cm
disk, f = 800 MHz , 4 = 0.
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Figure 3.20. Ftrst—nvde radiation p a t t e r n s  fo r  t h e  6.7 cm
disk , f = 800 MHZ, 4 = 90.
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Fi gu re 3.21. Fi rs t—mode radiation patterns for the 6.7 cm
disk , f 805 MHz , ~ = 0.
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Figure 3.22. First—mode radiat ion p a t te r n s  for  the  6 . 7  cm
I disk , f = 805 MHz , ~ = 90.
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Figure 3.23. First—mode radiation patterns for the 6.7 cm

I disk , f = 810 MHz , 4’ =
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Figure 3.24. First—mode radiation patterns for the  6.7 cm

-
~ disk , f = 810 M h z , 4~ = 90.

I

~~~~~~~~ 

~~~~~~ ~~~~~~~~~~~~~~~ _ 5.—--- - 5. - -—.— 5.--—- — -—— — 
- - - -

- - ‘
— - -———5.—-—— —

I.

- ~~~~~~~~~~~~~~~ ~~~~~~~
_

~~~~~~~~~~~~~~~~~~~~
‘- 

~~~~~~~~~T. 

~-.~~—~ i: -



+—+ O cut 
0

+ .— — — +  ,~ cut

4- +
/ 

-4. +

4

+

.1. . .- - .4. 90

Figure 3.25. Second-mode radiation patterns for the
12.68 cm disk , f = 710 MHz , 4’ = 0.
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- 12.68 cm disk , I = 710 MHz , 4 = 90.
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be the stud location. ¶

The radiation pattern was measured for the 810 MHz and 860 MHz

resonances , where the 860 MHz resonance is a result of the zero—to—pole

conv ersion , as described in Section 3.14. The 810 MHz pattern results

are shown in Figures 3.27 and 3.28. They indicate that the radiation

pattern is “anchored” to the shorting stud . This suggests that the

pattern can be be scanned in azimuth by repositioning the shorting stud .

However, if the pattern is scanned in this way , the input impedance will

vary , as describe~’ in Section 3.2.

The radiation patterns for the 860 MHz resonance are shown in

Figures 3.29 to 3.31. Figure 3.29 shows the azimuthal radiation

pattern , and indicates that the pattern maximum is aligned with the

shorting stud (in azimuth). Figures 3.30 and 3.31 show the general

shape of the pattern to be the same as that of the 810 MHz pattern.
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Figure 3.27. Measured rad i at ion p a t  t er ns  f or  t I ~c two—port
6.7 cm d i s k , f = 810 M h z , ~ = 0.
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I Fi gure 3.28. Measured radiation patterns for the two—port
6.7 cm disk , I = 810 MHz, ~~, = 90.
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I Fi gure 3.30. Measu red rad i ation patterns for the two—port
6.7 cm disk , I = 860 MH z , 4 = 0.
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CHAPTER 14

SUMMARY

In this thesis , an elegant and efficient method for analyzing

microstrip antennas with simple geometries has been introduced . An

extensive study of the microstrip disk was made , and analyt ic and

measured results were compared to prove the val idi ty of this analysis

method .

A simple but accurate analytic model for the microstrip element was

developed in Chapter 2. From the fact that the radially directed disk

surf ace current must be zero at the edge, an d from the close prox imity

of the antenna to the groun d plane, the antenna element was modelled as

a closed cav ity with the aperture being replaced by a perfect ly

conducting magnetic wall. Since the antennas are very thin , the

internal fields ware taken to be TEM only. With the assumption that a

source current must have negligible divergence for such a thin cavity ,

the internal fields were determined and confirmed by using both mode

matching and a resonant mode expansion .

An extremely efficient method for calculating the input impedance

has been introduced in Chapter 2. The method is based upon the fact

that the input impedance of a high Q system is relatively independent of

the origin of any power loss. Since the microstrip antenna has a high

Q, the radiated power , copper loss , and dielectric loss can be

considered as a lumped dielectric loss, without substantially changing

the calculated input impedance . The input impedance can then be found

by finding the fields inside the perfect cavity with the modified lossy

dielectric.
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The microstrip disk exhibits some interesting input impedance

propert ies , as the anal ysis above , and the measured data of Chapter 3

can verify . Near a resonance, the input impedance locus is an almost

perfect circle , slightly shifted above the real axis of the Smith chart.

Sections 2.3 and 2.6 show that the diameter of the impedance locus is a

function of the dissipative losses and the radiated power , while the

amount of shift above the real axis is a function of the effective width

of the source current distribution .

With the simple analysis method described above , it can be shown
I

that the disk antenna has a very useful  va r iab le  input  impedance

property,  specifically useful for matching . In Sec t ion 3.2 , it is shown

that by radial ly varying the feed location , the resonant input impedance

can be varied by orders of magni tude .  in Section 3 .3 ,  it  is sho wn that

a two—port disk can have the same property. By varying the angular

separation of the feed point and a shorting stud , the resonant input

impedance can again be varied over orders of magni tude .

Section 3. 14 shows that  the input  impedance for the one—port  disk

antenna can be described very accurately and elegantly with a simple

circuit  model. The ci rcui t  model is shown to consist of a series

inductor and a tapped RLC tank  c i r cu i t , where the RLC tank represents

the resonant mode contribution , and the series inductor represents the

contribution of the non—resonant modes.

Both the input impedance and the radiation pattern of the disk were

investigated in detail. Chapter 3 shows that the results calculated

from the simple analysis are in excellent agreement with measured data.

Howev er , from the higher—order mode results , it appears that some
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additional work must be done toward finding the effective source width

of coaxial feeds.

The accuracy of the calculated resonant frequency of the disk was

improved somewhat by using a method repeated from the literature in

Appendix A. With the method , the resonant frequency error was reduced

from more than 2% to less than 0.7%.
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APPENDIX A

IMPROVEMENT OF CALCULATED RESONANT FRE QU ENCY

From the cavity model of Chapter 2, the resonant frequencies of the

microstrip disk are found to be those frequencies where (K a) is a zero

of JN
(K l a ) .  However , since this is a perfect cavity result , the field

fringing at the edge of the disk is neglected . In reference [14] a

method has been described to approximate the effects of this fringing.

By finding the dc capacitance of the disk , an effective radius can be

found , and is always larger than the physical radius . This larger

radius is then used at the microwave frequencies for all calculations.

From the above reference ,

a = a Ef ( A . J )
eff

where a is the effective radius , and EF is the extension factor , andelf

is defined by

I 2t I iia 1
Ef 1 + 

~~~~~~ [ ~
f l (~ -~) + l .7 7 2 6 ]

J. 
. ( A . 2 )

The modified resonant frequency is easily calculated from

v z
f = 

C O (A. t )
2’~aeff r

0’~A
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where is a particular zero of Jn
’(Z)

~ 
and V is the speed of light in

free space. As an example , the modified resonant frequency is compared

to the original for the disk of Figure 3.5. The measured resonant

frequency is found from Figure 3.6 as 792 MHz. The unmodified resonant

frequency is calculated as 810.6 MHz. This is in error by 2.3 % . From

equation (A.3), the modified resonant frequency is found to be 797.7

MHz. This is error by only 0.7 % . Recall that from the definition of

resonance in Sect ion 3 . 14, and from Figure 3.6, the resonant frequency is

independent of feed location.
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APPENDIX B

GENERATI ON OF COMPLEX BESSEL FUNCTI ONS

Numerical techniques which are used to generate complex Bessel

functions are well—described in the literature . An outline is presented

here for com p leteness.

Throughout the analys is of Chapter 2, it was seen that the wave

number (K 1 ) was complex . Therefore , the Bessel functions having K 1 in

the argument were also complex . The Bessel functions are found using

the recursion rela tions

I’ (z) + (z) = -
~~

-‘
~ (z) andn—i n+1 z n

(B. 1)

~V (z) — 
~l’ (z) = 2’Pn— I n+l n

where ~ is either Y or J
m m m

Since the large—order asymptotic expression for .1 approaches zero

in the l imit , the J are found by using a reverse recursion of B.1. The

recursion is init iated at some high—orde r N , w i th  and

arbitrarily chosen as (1÷jO) and (O+jO), respectively. After the

recursion is completed , the requirement that

1 = J + 2 
~ ~~~~~ 

( B . 2 )

is used to denormalize all of the .1 . Since the normalization factor ism

1
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F = J + 2 ~ J (z)  - (B .3)
o - 2m ~m 1

each J is found by dividing the respective recursion result by the

normalization factor.

Once the J are found , the Y can be foun d using a forward recursionm
of B.1 since the V increase with increasing order. The starting values

for the recursion are

J (z)
Y ( z )  = —

~
-- 

[in (1—- )÷ ~] ~0 — 

k=i 
(_)k 2~ (B.4)

and from the Wronskian relations ,

Y 1(z )  = Y (z ) - 

~
] /J0

(z) . (B.5)

Here , the principal argument is used for ln(z) and care is taken not to

specify (z) as an exact zero of J (z), or of JN I
(z). Also, Y is the

constant 0.5772.

To generate the 
~m ’ an order must be chosen at which to start the

recursion . The large—order asymptotic expression for .J~ is

j  ( 7 )  -
~ 

-- - -~~-- 1~-~1 (B.6)
“

and as n~ ’- , the asymptote approaches zero. The initial choice of (O+j0)

for was in error by approx imately
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(B. 7)

since 
~N 

was assumed to be zero. By specifying an acceptable absolute

error ~ , the starting order can be found by numerically solving the

equat ion

N = { £ [ ]  N J~ 
2 (B .d)

Four digit  accuracy was desired , so ‘ was chosen as 0 .0001.
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APPENDIX C

EV ALUATION OF CLAUSEN ’S INTEGRAL

In Chapter 2 it became neccesary to evaluate the sums

1(0) = ~ -~~~~~~~~~~~~ -~~ °-~~ (C. n
k=l

and

g( o ) = ( C .2 )

Equation C.1 is a restatement of Clausen ’s integral , found in any major

handbook , and is just

f(n) = 0 
[1 

- ln( ) + 2 
k~l ~~~~~~~~ (~

) 2k] , ( C . 3 )

where c is the Rieman—Zeta function , also found in most han dbooks.

Although neither C.1 nor C.3 is a closed—form expression , C.3 converges

much more rapidly then does C.1 .

Equation C . 2  is related to C.1 since

k = 1 
cos ( k U )  

= 

0 k=1 
—~~~~ °-~- (I t ) + ~ (3) - (C.4)

Thus C.2 can be restated as
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g(0) = e 2 [1n 0 
— -f + 2 

k = l  k I 2 k ) (
~“) 2k] , ( c. 5 )

which has a much more rapid rate of conve rgence than C .2 .
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